Bradzorg (documentation of my process)

Unreal engine packs:

Animation starter pack

@ Epic Games

-0 X

Launch
Unreal Engine 4.25.3

Marketplace

¢ RESULTS FOR "ANIMATION STARTER PACK"

animationstarterpac X Q VO !6

Freev OnSale Submit Content Help

nglltécrezheerj i r/

Home Browsev Industriesv

Unreal Engine

Sortby: Relevancy

Filter Results

.~ Template 14 Tags Rese

Q

Discount
10% off or more

30% off or more

Animation Starter Pack SpltScreen Template FPS Starter Pack

50% off or more

70% off or more

Free

AddwCarr @

Setting up the project:

u
Select Template

Todkoiok v 4
£24.91

Tkl v 12

£9.94  Max Price

Fe 10

The blueprint project template is a 3™ person template.



Building a Third Person Shooter Character

Setting up the camera:

By default, the 3" person camera blueprint is set-up for an adventure or mmo
type game.

| need a 3™ person shooter camera set-up. Having this base will make
development smoother and as a result the product also.

Moving the camera. If | just moved the camera manually it would clip through
walls and objects.

So, in order to prevent this from happening | needed to keep the camera
boom in the centre of my characters mesh because this is the point that | want
the camera to rotate around.




However, | needed to rotate the camera around the upper portion of my
character. So, | have brought the camera up to the centre of my characters
neck (58.49° Z-axis).

| then changed the target arm length variable to 100. | did this to bring the
camera closer to my character.
Camera
Target Arm Length
[* Socket Offset

[ Target Offset




At this point the editor camera speed was proving to be way too fast for
getting screen shots and over all traversing unreal engine, so | changed the
camera speed from four to two.

Camera Speed

——

Camera Speed Scalar

2

Camera Speed

Camera Speed Scalar

This was a well needed adjustment as now traversing unreal engine was much
simpler.

| now needed to position the camera over the characters shoulder as at this
point the character was in the way.




So, instead of manually moving the camera and causing the clipping issue again
| changed the socket offset Y variable to 55.0
4 Camera

Target Arm Length

4 Socket Offset

[* Target Offset

This has now prevented the camera from being able to clip through objects as
it will get pushed back in instead. The camera now will interact with the
environment as it should.




However, this has now caused a new problem. The camera will now clip
through the character showing the inside of the model.

To fix this, if the camera entered the characters mesh, | hid the character and
as the camera exited the mesh, | made the character reappear. In order to do
the | need to use an event tick in the vent graph. Event ticks should be used as
little as possible as they constantly run. Other event ticks are things such as
input and turn rate. These need to be event ticks because the player is going to
be constantly looking around the environment.

=® Viewport [ Construction m= Event Graph

M L1 ]
L-f e

£ Event Tick




| then added a collision sphere component. A collision shape (box, capsule or
sphere) is added to detail if this object collides or does not collide with
something then something does or does not happen. This is going on the
camera, so | named it ‘camera visibility sphere’. It is added to ‘follow camera’
as it needs to stay with the camera.

4 Add Component -

R, ArrowComponent (Inherited)

1 Mesh (Inherited)
4 g CameraBoom
4%y FollowCamera

. camera visability sphere

© f CharacterMavement (Inherited)

However, it is added to our character by default.

The easiest way to add this to the camera instead of the character is to go to
transform and reset the ‘location’ to default by using the yellow arrow symbol.

4 Transform
Location -

Rotation «




The sphere will then be visible on the camera.

At this point the sphere was too big and as a result it could cause the character
to disappear when the camera is an acceptable distance away from the
character. So, to fix this | went to shape and changed the sphere radius
variable to 12. | also moved the collision sphere back into the camera lens to
ensure a fix.

4 Shape

Sphere Radius m 2

v

4 Navigation

| then needed to ensure that the collision sphere would not have any issues
with the capsule over the character. To do this | went to collision settings and
made sure the collision presets were set to ‘overlapalldynamic’. | did this
because | only need the sphere to read events not to do any simulating in the
game or interfering with the character at all.

4 Collision Presets OverlapAllCy namic «

Object Type




| now needed to prevent the camera from bouncing off the character capsule.
To do this | selected the character capsule and changed the collision preset
from ‘pawn’.

4 Collision Presets

Object Type

To ‘custom’ to allow me to change the camera from ‘blocked’ to ‘overlap’.

Object Type N
lgnore Overlap Block
Collision Responses [ [ e

Trace Responses
Visibility B B-
Camera B B

The next step was to write the code to drag and drop the capsule component
and the camera visibility sphere from the component tab into the event graph.

¢ Event Tick




| then needed to add an event to do this | dragged from ‘capsule component’
and added a ‘Is overlapping component’ event. | also attached ‘camera
visibility sphere’ to the ‘overlapping’ event.

© EventTick

Capsule Component - 7 isid\il&iiﬁﬁing'éomponmt

4 0 m Val
Camera Visability Sphere Target Retum Value

Other Comp

Next thing needed was a ‘Branch’. | connected the ‘event tick’ and the ‘is
overlapping component’ to this ‘Branch’. This is because it will tell unreal that
it should constantly be watching for these two components overlapping.

 Event Tick

Cap :'.1'-;:‘3'7‘3-314-11 - _fis 6\!9!‘]8"{')9 cmmﬂt

- - Target Neturn Value
Camesa Visability Sphere

Other Comp

Now the mesh needed to be dragged in with a ‘set owner no see’ event. This is
because the mesh is what is getting affected by this line of code.

| SetOwner No See

The ‘set owner no see’ was then copied and pasted as | needed two of these
with one ticked if the event is considered true to hide the character (this is the
first one added) and one unticked if false so make the character reappear (the
pasted one). The mesh was then connected to both.

| SetOwner No See

—r— P
Target

New Oaner No See

\ | Set Owner No See

—»




The whole line of code looks like this.

| SetOwner No See
& Event Tick

Cap=ule Component 4 f Is Overlapping Component

e a Target Return Value
Camera Visahility Sphere B

To get to this point | have used my secondary research videos ‘Third person
shooter build introduction’ and ‘“TPS Build Part 1 — Camera Setup’ (K,Dail 2015)

Reflect on the section!

Setting up the controls for aiming:

This next section shows how | set up the controls for the player to aim down
sights.

The first thing that | had to do was add an action map for aiming down sights
this is done in the ‘project settings’ under ‘engine’ then ‘input’. The new action
map was called ‘Aimdownsights’ because this is what it is in relation to. The
input to aim down sights is the right mouse button.

U

& FIO[ECUSEIIE

. Search Details
Engine )
“<Engine - Input

'h These settings are saved in Defaultinput.ini, which is currently writable.

4 Bindings

il ResetVR

P Aimdownsights

., Right Mouse Butten

I Axis Mappings 4 @

Speech Mappings 0 Array elements




| was then able to add this to the events graph.

£ InputAction Aimdownsights

The next step was to set up a system that must run though a server as its
primary. This means one person is hosting the game from his end with people
joining his server using his bandwidth and sending messages to his server to
allow them to perform actions in the server environment. So, to do this | had
to set up a couple of functions to be able to handle this. The first function
added was to toggle clicking and unclicking the aiming system, this was named
‘ToggleADS’.

Functions

¢ ConstructionScript

Macros

The second function added was named ‘StartADS’.

4 Functions Override + == Function
¢ ConstructionScript
f ToggleADS

Macros

And lastly a function named ‘StopADS’.

4Functions
#¢ ConstructionScript
f ToggleADS

f startADS

Macros



These were now visible in the bar up top.

File Edit Asset View Debug Window Help

‘- WO B ¥ =

Compile Save Browse Find  Hide Unrelated Cla: tings Class Defaulis

= Viewport f constructic ma Event Grapl f Toggle ADE f startADS f stopADS

These then needed to be added to a category for handling the weapons. To do
this | needed to add a new category called ‘weapons’ and add it to each
function.
il Details
Search Details
4 Graph

Description




Now | needed to set up a Boolean, this is a variable that is true or false. To do
this | added a new variable and named it ‘playerisADS?’ because this is what
the game will be checking for.

3 Details

Search Details jo E o~

4 Variable

VELEIHERYEL T playerisADS?

Instance Edita [JJj
Blueprint Read [Jj

Category

Aepication - [ SNRG

Replication Co

Now | needed to tell unreal to do something when the aiming button is
pressed or realised. To do this a added a flip system which tells unreal if true
do, if false don’t do.

™ Toggle ADS

This is the base for this line of code. | now needed to tell unreal what to do
when aim down sights is pressed and realised. | first needed to tell unreal to
find out who is the server (host) and who is the client (guest). This is done in
the start ADS function.

= StartADS




Now, ‘switch has authority’ needs to automatically set the event as true if
input is made by the server.

= Start ADS T Switch Has Authority
» » Authority [ =

= Playeris ADS? [
Remaote [

However, if the client makes the input the client needs to talk to the server to
pass the event on to tell unreal that the player has made this input. To do this |
needed to make two custom events in the events graph, one named
‘serverstartADS’ and another called ‘serverstopADS’.

¢ gerverstopADS

& serverstartA DS

These both needed to be set as ‘run on server’, ‘reliable’ and ‘call in editor’.
Call in editor made it so | could test it in the editor.

4 Graph Node

MName serverstartADS

4 Graph
Keywords

Run cn Server
I Reliable

Call In Editor

Replicates

4 Inputs

& serverstopADS Please press the + icon above to add parameters

% serverstartADS

And from there | needed unreal to be able to toggle something.



To do this | needed to add ‘startADS’ and ‘stopADS’ as we have now told unreal
to send a message to the server. Which is represented by the connection line
between functions/variables.

© serverstopADS

O Start ADS

7 serverstartADS
& Stop ADS

This will now tell the server that a client has made an input to aim down sights
and give authority for them to set the ADS event to true.

™ StartADS (75 Switch Has Authority

[ — S Authority B

|
Remote B Playeris ADS?

| then made the same code for the stop event but for stopADS instead of
startADS and set the event to false.

(75 Switch Has Authority

13 Authority =
Remote [P

>‘(> Serverstop ADS




Now that ‘ToggleADS’ was passed through these two events that were just
made | needed to set up a branch to handle the flip situation for the camera to
be able to adjust the camera boom, field of view and the character rotation.
So, | connected ‘playerADS’ to the branch. For the Boolean to be read on
multiplayer it must be set to ‘replicated’.

PREGELS

Variable N
Instance E i
Blueprint F [}

on

[
.
Replicated -
L

¢ Toggle ADS

e

4 Default Value

Playeris AL [l}

Now that this is being read correctly. | needed unreal to take the camera and
put it up closer to the character. The easiest way to do this was to drag the
camera boom into the events graph and set the target arm length to 60 by
adding a ‘set target arm length’ event in the graph and input the needed arm
length in there and connect this to the branch.

<{_ Branch
&3 True p —

Condition False [

-

Playeris ADS? e ——

Camera Boom




now | needed to add another ‘set target length’ with the default length and
attach it to the false branch.

90.000000 =




| now needed to set the character to rotate with the camera while the player is
aiming down sights. To do this more code needed to be added for after the
player toggle’s ADS. Firstly, it needs to be pasted through both the server and
the client. So, to do this | needed to add code into the ‘StartADS’ and
‘StopADS’. To do this | added ‘followcamera’ to the ‘StartADS’ function and set
the ‘pawn’ (character) to a ‘control rotation’ and to ‘true’.

| then needed this rotation to use a ‘yawn’ (side to side) rotation. To do this |
just needed to pass the Boolean along.

'- ET ' = ET
5 I s
» » »

s Pawn Control Rotation Uze Controller Rotation Y aw

&

Target

| now needed to manipulate the movement to where the character if facing by
adding ‘charactermovement’ to the ‘StartADS’ function and orient the
character to a direction. This is left as ‘false’ because the default for the
‘charactermovement’ is ‘true’.

Use Pawn Control Rotation Use Controller Rotation Yaw Ovient Rotation to Movement

Target Target

: —
Character Movement

Now | copied this from the ‘StartADS’ and pated it to the ‘StopADS’ function.
The ‘true’ and ‘false’ variables then got flipped.




At this point the camera will follow the aim down sights state

VIR e [

I

but rotate around the character if not aiming down sights.

-
®
3
il
E

‘.
A
i
2
o-
:.
-L.
4

i

This also allows the player to snap to a point of interest by just simply aiming
down sights.


https://www.youtube.com/embed/xL2TPqJZ4lQ?feature=oembed
https://www.youtube.com/embed/8_Kjvm3RDa0?feature=oembed

now | needed to do additional camera motions. This is done in the ‘events
graph’. This is because the other code needed to get passed to everyone in the
server as it had to do with character positioning. however, this next big of code
is just for the players personal camera so it does not need to get sent to the
other players. To add the additional camera motions, | first dragged
‘followcamera’ into the event graph and set the ‘field of view’ to a smaller
variable (75) while the player is aiming down sights. | also needed a copy of
this for the default camera ‘field of view’ (90). The variable is only set to ‘75’ as
it is a base zoom for normal guns, if | were to add snipers and things like that
this number would be changed accordingly.

SET

Or Tasrget Arm Length | 60 | o O Field Of View [ 75.0]

Target Target

"~

SET

O Target Arm Length | 100.0 O O Field Of View [900'

Target Target

Vo

Camera Boom Follow Camera

Now | needed to set the character rotation to be on the side of the players. So,
| copy some code from ‘StartADS’ and paste it into the ‘event graph’ and made
another copy of the top line of code because they need to be the opposite of
each other. Everything is then connected to the rest of the code.




| now needed to start organising lines of code, so it wasn’t a mess and make
sure everything was easy to traverse in the ‘Eventsgraph’. | set the code into
two parts, by using the ‘comment’ system which creates a nameable white
background. the first ‘Aiming weapons’

-

© Toggle ADS

)




A helpful side note was the use of ‘reroute nodes’, These are points in the
graph used to redirect a line for cleaner looking code.

> SET > SET
C» Field Of View [ 75.0] O Use Pawn Control

]

Target

Target

A '
b s SET

C» Field Of View [90.0]

Use Pawn Control
Target D

Target

e ————————

Follow Camera

| had trouble showcasing what was achieved at first as the tutorial was made
on a slightly different build of unreal engine 4, this resulted in when | had the
game run two players it was not working as intended and would not show the
second player. however, | found that | had to set the ‘netmode’ to ‘play as
listen server’. This fixed the issue and now made it possible to showcase
today’s progress.



https://www.youtube.com/embed/GhrwXmfspAA?feature=oembed

To get to this point | have used my secondary research ‘TPS Build Part 2 —
Character_BP Aiming’ (K, Dail. 2015)

From this point | will be saving a day’s progress as a different save in unreal
engine as if | lose one, | don’t lose the whole project. | am doing this as a
precaution. This day’s version is ‘Bradzorg?2’.

Open Level

Search Folders Search Assets

|
- Il AnimStarterPack
[ Il Geometry

[ Il Mannequin

[ Il StarterContent

[ Bl ThirdPerson

I I ThirdPersonBP

Now | will make an animation blending offset for when players are aiming
weapons.

To do this | needed to go into the ‘mesh’ animation blueprint and edit it there.
This can be easily found by selecting ‘mesh’ then going to the ‘animation’
detail and using the search button on the ‘anim class’.



https://www.youtube.com/embed/6YzJCMvHMPU?feature=oembed

| then added a ‘cast to Thirdpersoncharacter’ just after the ‘Event Blueprint
Update Animation’ and fed it into the ‘Is Valid’ on the ‘Event Graph’.

< Event Blueprint Update Animation

- SeenfPawnownersvalid (Wil notbeiniPersona)

Delta Time X O»

? 15 Valid

Next step was to make a new bool by adding a new ‘variable’ named
‘Aimingweapons’ and dragging it into the ‘Events Graph’. | also needed a
‘variable’ that controls if the character is aiming or not this was already made
with ‘playerisADS’. So, this was added by creating a new line from ‘cast to
Thirdpersoncharacter’. A new ‘comment’ was then created.

AINYWEaPDIS:

Target Playeris ADS? Aimingweapons

This will essentially drive the characters spine when he breaks in half.

In this next part | needed to have something in place to drive the characters
bones so what | needed to do was copy and paste ‘try get pawn owner’ and
‘cast to Thirdpersoncharacter’ to the end of the code to further extend it. The
‘cast to Thirdpersoncharacter’ was then ‘converted to a pure cast’ by right
clicking on it.

J Try Get Pawn Owner

Target [self|  Return Value

»+ Cast To ThirdPersonCharacter

Object As Third Person Ch

Success




From ‘cast to Thirdperson character’ a ‘Get Base Aim rotation’ was then added.

" F GetBase Aim Rotation

Target Retum Valse Or

However, | needed the spine to not exceed an angle of 90° or 75°. So, | ‘split’
the ‘Get Base Aim Rotation’
" GetBase Aim Rotation

Target Return Walue X
Return Value

Return Value Z [

This was to set angle parameters with the use of ‘clamp angle’ with a ‘min
angle degrees’ of 90 and a ‘max angle degrees’ of 90.

[ Get Base Aim Rotation ~ [ Clamp Angle

s @ Angle Degrees Return Value @
Target Return Value X (Roll) O
» Min Angle Degrees | 90.0
Return Value ¥ (Pitch) @ =
Angle Degrees
Return Value Z (Yaw

Now this needed to be set to ‘make Rotator’ Z(yaw).

% Make Rotator
O X (Rl [0.0] Retumn Vale @ —
O ¥ (Pitch) [0.0]

= Z(¥aw)

| then added a new variable named ‘Aimingspinerotator’, if this was to be
connected now the value being read would be inverted.

SET

———@ Aimingspinerotator

Return Value @ ——




Next step was to add a ‘branch’ to tell unreal to play a set of animations when
the player is aiming and a different set of animations when the player is not
aiming. All ‘Branch’s’ have a ‘condition’ that needs to be set and in this case its
‘Aimingweapons’. As a result, if the ‘branch’ ‘condition’ is ‘true’ then the spine
will be influenced however, if the ‘condition’ is ‘false’ the spine is not
influenced.

- “Branch .

[ 3 True P

Condition False

f Try Get Pawn Owner

£

Aimingweapons Target [self]  Return Value

»+ Cast To ThirdPersonCharacter
Object As Third Person Character

Success

P ——
Target Camera Boom

%

Target Relative Rotation O»

The next few steps were then done in the ‘animgraph’, This is in ‘myblueprint’.
By default, there is an ‘idol’, ‘walk’, ‘run’ and ‘jump cycle’.

The first step here was to separate the default ‘state machine’ and add a ‘new
save cached pose’ named ‘BaseMovement’.


https://www.youtube.com/embed/iCKngKZl9cU?feature=oembed

Default
Machir | BaseMovement l

.'. 1 1T1711] .*.p':'f""’

The second thing added was a ‘use cached pose’ and that pose was/ is
‘BaseMovement’. This is basically just a copy of the default animations. Its
beneficial to have this because | can duplicate this one tab instead of the two
above it.

Default
A BaseMovement

H S — .*.PDEE

Use cached pose 'BaseMovement'

'-“!I Result

The third thing needed was to start breaking the character up so to do this a
‘Blend Poses by bool’ needed to be added this acts as a ‘switch’ and or a ‘flip
flop system’. This is set to false and is connected to the base motion
movements. this is for when the player is not aiming.

Use cached pose 'BaseMovement’ " Blend Poses by bool

* | Active Value [

a N
W True Pose

-

e[0.1]

O» False Blend Time [0.1]




However, | needed some animations for when the player is aiming to do this, |
needed to do a brake up of the characters body. To do this | needed to use
something called ‘layer blend per bone’. Another copy of ‘use cached pose’
needed to be added and connected to the ‘base pose’ as well as being
connected to ‘false’ on the ‘Blend Poses by bool’.

Use cached pose 'BaseMovement’ " Layered blend per bone

Use cached pose 'BaseMovement’

Then | needed a bone in the upperpart of the body that this can start to
manipulate. So, | needed to go to ‘layer set up’ to add another branch and
named the bone ‘spine01’ because this is the main bone that will be
manipulated.

Search Details

(“Layered blend per bone

—— I*Ein:-r:F‘n:-sr:

ll:ll.J Blend P

O» Blend Weights 0| 1.0

< Add pin



https://www.youtube.com/embed/cP_MvjuRzgg?feature=oembed

All the bones are in the ‘skeleton’ tab.

4y .upperarm_l
4 -4 lowerarm_|
4-%-hand_|

4-%-thumb_01_|
4-%-thumb_02_|
4~ thumb_03_|
4~ lowerarm_twist_0
: upperarm_twist_01_
clavicle_r
§- upperarm_r
44 lowerarm_r

From this | needed something to drive the spine done while aiming. However, |
needed an animation that will allow the character to aim a weapon when the
player aims. This is where the ‘animation starter pack’ comes in handy. The
animation | needed from these downloaded animations was named
‘Idle_Rifle_Ironsights’.

Abrged D SeecMl €5 B Comterd » Andrllartedack

¥ oy

X .

). Compiling Shaders (136)



https://www.youtube.com/embed/-JT2P5tiSYw?feature=oembed

However, more steps were necessary to be able to add this animation into the
‘animgraph’ as it’s not possible just to just drag and drop it in.

-

o8 N
R s
» AnmTiatetace SUNIRSH ) © -

This is because the ‘skeletons are not compatible’. So, to fix this | needed to
make a copy of the character. So, to do this | found the skeleton of the ‘mesh’
then retarget the ‘Idle_Rifle_Ironsights’ animation. However, there were no
skeletons to choose from.



https://www.youtube.com/embed/ey6c-ayOFIo?feature=oembed
https://www.youtube.com/embed/QPj5nGfh7h0?feature=oembed

So, at this point to fix this | needed to do ‘retargeting’ to get the animation
over to the other skeleton. However, | ran into a huge bug with unreal engine
version 4.25.4 (the version | started on). | had the ‘retargeting’ tab open as a
window and | clicked else ware on the screen, resulting in it closing and
refusing to reopen apart from the times it showed up as an ‘Unrecognized tab’.
| searched for around eight hours for a fix. | searched on Unreals official
website (Epic Developer Community Forums (unrealengine.com), as well as
YouTube and eventually | asked my tutor if he knew how to fix it but after
resetting the layout, reinstalling Unreal Engine and searching around the
software just in case It was there and | was missing it, | was forced to restart.
This was not all bad though because now | downloaded the same version of
Unreal Engine as the tutorial was using (4.9.2). | also had the opportunity to
reassure myself that | was learning how to use the software and not just
copying the tutorial as | was able to catch back up in just around 3 hours. At
which point | found the fix for the previous build because as | opened
‘retargeting’ on my new version of the game it was then miraculously able to
be reopened on my previous version. However, in my attempts to find a
workaround when | couldn’t find a fix, | had messed up some mesh blueprints,
so restarting was necessary regardless. | now have one old version, three
copies | made to try fix’s safely where the ‘retargeting’ tab was still showing as
an ‘unrecognized tab’ and a new one named ‘Bradzorgfmp’ this will be the
version | will be continuing to develop.

MY PROJECTS

4.9

Bradzorgfmp



https://forums.unrealengine.com/categories?tag=unreal-engine

Now that | was able to access the ‘retargeting manager’ again | continued by
setting the character into a ‘reference pose’ so that both the skeletons are as
close as possible adding a ‘new retargeting source’ this being ‘SK_Mannequin’
and setting the ‘rig’ to ‘humanoid’.

nnequin

Set up Rig

ion to different

0 g, he .
Select Rig Humanoid Show Advanced

spine_01

spine_02

spine_03

clavicle_|

gl o8 Retarget Manager

Manager Retarget Source

meshes per sk
different source.
ha i

it for t

retarget animation to different
it will the information to convert data.

Select Rig Humanoid - Show Advanced




| then found the ‘Idle_Rifle_lronsights’ animation and ‘duplicated’ it to the
other skeleton.

Select Skeleton X

Make sure you have the similar retarget base pose. If they don't look alike here, you can edit your base pose in the Retarget Manager window to look alike.

[Source] [Target]

1 item (1 selected)
Remap referenced assets
Convert Spaces to new Skeleton
Show Only Compatible Skeletons

== Content Browser
I AddNew'~| & Import Save
€ & | = equin » Character » My

i Folders
4@ Content

’

u I B e L T 8 R e ] — .
& 8 A 0w &
: an .l‘_‘r_iy:‘ b — Y (it
R —

- :
'
"

Pieview
Chick o

nn»

S
b s L o4

|_P] T -

4 Oelaety



https://www.youtube.com/embed/LH3v-kGRhaE?feature=oembed

The next step was to add the ‘AimingSpineRotation’ variable to the
‘animgraph’ alongside a ‘Transform (modify) Bone’. By default, this allows you
to modify the ‘scale’, ‘Rotation’ and ‘Translation’.

ma Event Graph s Anim Graph

" Transform (Modify) Bone

Bone: None

__ Translation
~ [ 00][v 00][Z 00]

i F’Dtatinn

Aiming Spine Rotator Lo “ 0.0]

Play Idle_Rifle_Ironsights_Copy ! 1.0z 1.0]

':..:: Component Pose

O Alpha m|

However, | only needed ‘rotation’, so | took ‘scale’ and ‘Translation’ off by
using the tick boxes. | did this to minimise any potential mistakes by mis-
clicking.

Transform {Modrfy‘_i Bone

_ Rotation
O [ 00] (7 00][Z 0]

.f.[ Component Pose
O Alpha |7

Search
Bone to Modify

4 Translation
> [(As in) Tran

4 Rotation
I [(As pin) Rota

Rotation Mode




At this point the ‘alpha’ needed to be set to an even blend for two more copies
of this too, the value is set to “.3’. The ‘Alpha’ value then equals ‘.9’. this is
equal to 90% manipulation of the characters back. | needed to set a ‘skeleton
control’ bone for each of these one being ‘spine_01’" another being ‘spine_02’
and another being ‘spine_03’. These are the bones that are being manipulated
or ‘modified’.

“Transform (Modify) Bone

@' Rotation
* Component Pose

O» Alpha ‘E]

Transform (Modify) Bone

‘

@' Rotation

* Component Pose

O» Alpha [.3]

Transform (Modify) Bone

!

@' Rotation

* Component Pose

O Alpha [ 3]

4 Skeletal Control

These are then all connected to the rest of the ‘code’. When the main
animation for the character ‘Play Idel_Rifle_Ironsights’ is connected to the top
‘Transform (modify) bone’ a ‘local to component’. These allow unreal to make
something happen in the character and not to the character its self. These are
commonly used for montages or animations. Another is then created when the
bottom one is connected into ‘Layer blend per bone’.



Use cached pose 'BaseMovement’
— Layered blend per bone
Transform (Modify) Bone ' <
Bayie. spine. X ’ BasePose

———— @ Rotation

Aiming Spine Rotator @ — """

\\ Local To Component # ComponentPose
RS ’ ’ /

, Blend Poses 0

¥ O Blend Weights 0
O Alpha 3]
<+ Addpin

— \ RS R
Play Idle_Rifle_lronsights_Copy3 \\ \\ Transform (Modify) Bone
\

\‘~. z - hoton * —— | Component To Local Use cached pose 'BaseMovement’
\ )

# ComponentPose / ] ” *

O Alpha [ 3]
Bon

Transform (Modify) Bone

@ Rotation $ -
? Component Pose

O Alpha ‘

The final step for this was to set the ‘AimingWeapons’ variable to the ‘Blend
Poses by bool’.

o m—

Aiming Weapons

Blend Poses by bool

Active Value

” True Pose

” False Pose

O TrueBlend Time | C

e Blend Time

This should have been the end of this part however, when | play tested it all
the characters movement animations were not playing at all.



https://www.youtube.com/embed/8GXhe076sms?feature=oembed

To fix this | rewatched the video following every step thoroughly. | found that |
just missed to reconnect the ‘Event Blueprint Update Animation’ to the rest of
the code at the start of this section.

This brought the animations back but, towards the end of the video | realised
as | aimed the camera up my characters animation would play backwards. This
was | forgot to fix it earlier. So, to do this | only needed to add a ‘InvertRotator’
in the events graph, connect it to the ‘set AimingSpineRotator’ and connect
‘make rotator’ to the inverter.

—————

' SET =

" Viake Rotator & Aiming Spine Rotator

Retumn Value @ f InvertRotator

/
= A Return Value @ *

This was the end result of using my reference video ‘TPS Build Part 3 Character
AnimBP Aiming’ (K, Dail. 2015)


https://www.youtube.com/embed/3LWHQmB4IkE?feature=oembed

Asset migration

The next natural step in the process was to add a weapon. | did this using
‘Asset migration’, | took the 3D model from unreal engines ‘firstpersonshooter’
blueprint. This will act as a place holder just in case | run out of time and cant
create my own weapon asset. It is a simple process of just copying the file over
from that blue print over to my Bradzorg folder under the ‘content’ file.



https://www.youtube.com/embed/UrsuvLifVlc?feature=oembed
https://www.youtube.com/embed/wrOYSbj3oE0?feature=oembed

Now that | had the weapon asset, | needed to add it to my characters hand.
This is done in the ‘ConstructionScript’, these are only called once as the
character is spawned into the level.

=R iewp Lonst Togagh Start ¢
P ag

f

B Construction Script

The first thing added is the prototype assault rifle by just simply dragging the
mesh over from the ‘content browser’.

f Add Skeletal Mesh Component

It 3l IVICS

3 . .
Target | self Return Value

Manual Attachment ()

@ Relative Transform

The second is a ‘make Transform’, this tells unreal to spawn it in the game
world to a ‘scale’ of ‘1.0’ or the ‘scale of the character model.

>~ Make Transform

Location Return Value @
[ 00][7 00] [z 00

O

_ Rotation

[ 00][ 00][z 00]

Scale
[x 1.0][v 1.0][z 1.0]

i »




The third step is to drag the ‘Mesh (Skeletal Mesh Component) in as well.

f\\
i Mesh

i

The fourth step is to add an ‘Attach to’ and change the ‘Attach type’ to ‘Snap
to Target, Keep World Scale’.

TAttachTu —

»
Target
In Parent

C» In Socket Name |E|
Attach Type

Snap to Target, Keep World Scale -

Weld Simulated Bodies [

8 Construction Script

ch Ty

Weld Simulated Bodies [§)



https://www.youtube.com/embed/IgzbaU9UZM8?feature=oembed

So, to fix this | needed a place to attach the weapon model to, this is done in
the ‘skeletal mesh’. | added a ‘socket’ named ‘RHand_WeaponSocket’ to my
characters right hand, this is done in the ‘skeletal tree’.

" Bkeleton Tree <% Retarget Man:

hand X

All Bonesw § Active Socketsw | EOGITRG0

Mame

hand_|

4 hand_r

& RHand_WeaponSocket

ik_hand_root
ik_hand_gun
ik_hand_|
ik_hand_r

The name of this socket was then copied into the ‘In Socket Name’ back on the
‘attach to’.

[
Target
In Parent

In Socket Name

Attach Type

Snap to Target, Keep World Scale »

Weld Simulated Bodies [

When | then play tested it again the weapon was not facing where | needed it
to be.



https://www.youtube.com/embed/lwAIhgz2fG0?feature=oembed

This was fixed by simply adjusting the position of the model in the ‘skeleton’
map. In order to see the model, | needed to ‘preview’ the asset. However, |
needed to do this on the paused animation ‘Idle_Rifle_Ironsights’, so that |
could place it in my characters hand’s easier.

This was the result of my reference video ‘TPS Build Part 4 — Sockets and
Migrate Assets’ (K, Dail. 2015)



https://www.youtube.com/embed/Ymbi8bFVYf4?feature=oembed
https://www.youtube.com/embed/DlSviFI4EI8?feature=oembed

Setting up aim offset

The first step for setting up my ‘aim offset’ is to manipulate the spine to get it
ready for additional animations. To do this | needed to do an ‘animation layer’
and ‘keyframes’ to change the actual animation in unreal. The starting point
with this was to bring up the animation that | wanted to copy,
‘Idle_Rifle_Ironsights’.

() (= Pepective) (@ 1) (show) (LoD ao) (_x1.0) (@x10) (& @ )]
i imation Idle_Rifle. ights_Copy3

LOD:

Gaicas
hannelsz1
Approx Size: 277 %115%283

Idle_Rifle_ronsights.C.

The problem with this animation was that the character would lean left and
right as the camera faces up or down.

To fix this the spine bones needed to be facing straight. They look fine in the
‘world view’.

spine_01



https://www.youtube.com/embed/MDE_hwvFjZw?feature=oembed

However, in ‘local view’ the spine bones are shown to be around 25% off.

spine_01

In order to centre these bones a ‘key’ had to be made.

I

Export Record = Create Asset Compression Key Apply

() (= Perspective | Lit | 'show | (LoD Auto | (__ x1.0]|( @ x1.0]
Previewing Animation Idle_Rifle_lronsights_Copy3

Animation is being edited. To apply to raw animation data, click "Apply” | |

| then had to adjust these in the ‘world’ position by using ALT+J.




Then view if they were adjusted correctly in the ‘local’ position. The idea is to
get the blue curve facing the front of the character. This bone ‘Spine_01’ now
had an ‘additive’ animation applied to it.

The same was then done to ‘Spine_02’.

Ll

With ‘spine_03’ the gun had to be facing straight forward.




To finish these animations, | had to ‘retarget’ them to the ‘mannequin’
skeleton.

1-[ Choose Skeleton

Select Skeleton

S nStarterPack/UE4_Mannequi ann

Search Assets 2
- ;

Another way to do this is through the use of animation ‘blend shapes’. To do
this | needed to first set the parameters of the ‘X Axis Range’ to a minimum of
(-90) and a maximum of (90) like | had already done to the spine bone. This
label was named ‘pitch’ because that Is up and down in unreal.

4 Parameters

Apply Parameter Changes




The next step was to record 3 different animation frames from the
‘Idle_Rifle_lronsights” animation, one being the first frame (1) and named
‘Rifle_AO_CC'. (AO - Aim offset CC — Centre Centre)

And the third being frame (20), named ‘Rifle_AO_CD’ (CD — Centre Down).



However, because | had to record the animation to get these three frames |
was left with hundreds of the same frame.

Al Percentage: 0.00% CurrentTime: 0.000 / 2.467 (second(s)) Current Frame: 0.00 /75 (key(s))

= = - - -
T |"| 22199 |‘”| Sl |GG| qd1<4 d > I

To delete the unwanted frames, | just had to right click on the red animation
curser and select the ‘remove’ option. This was done to all three recordings.

Ani Percentage: 0.00% CurrentTime: 0.000 f0.033 (second(s)) Current Frame: 0.00 /1 (key(s))

0 qd4 4 P> i

The next step was to change the ‘Additive Anim Type’ to ‘Mesh Space’, the
Base Pose Type to ‘Selected animation and select the animation | wanted to us
it for which is ‘Idle_Rifle_lronsights’.



4 Additive Settings
ELLIVER T BT Mesh Space -
lase Pose Type Selected animation -

Ref Frame Index

These could now be added to ‘Rifle_AQ’. This is the result of my reference
video ‘TPS Build Part 5 - Retarget, Adjusting and Creating Animations/ Setting
up Aim Offset’ (K, Dail. 2015)

Finishing Aim offsets

The first thing to do was to in the ‘AnimGraph’ was to add the ‘Rifle_AQO’.


https://www.youtube.com/embed/gS99c7PlXxM?feature=oembed

" Rifle_AO

- * Base Pose

@ pitch

This needed a ‘BasePose’ animation, this being ‘Idle_Rifle_Ironsights’. So, |
made another copy of it in the ‘AnimGraph’ and attached it to my ‘Rifle_AQ’.

Play Idle_Rifle_Ironsights_Copy3 " Rifle_AO

”\'Ba

se Pose

@ pitch

This needed a ‘Pitch value’ so in order to do that | made a new variable in the
events graph and attached it to the pitch manipulation | made earlier under
the ‘comment’ ‘Spine rotation for aiming weapons.

“_’?"Ius:wiﬂﬂou orAIMINGg WEapons

[ Get Base Aim Rotation f Clamp Angle

= @ Angle Degees Reum Vae @
Taget Retum Vale X ®all) O

O Max Angle Dagees |90

This variable was then added to ‘Rifle_AQ’ in the ‘AnimGraph’.

Play Idle_Rifle_lronsights_Copy3 Rifle_AO

”‘ i = *Basepose *

/%\

{ Pitch @

This now allowed for the character animation to look directly up and directly
down smoother than before. However, the animation was not complete yet as
the characters left hand would slightly drift off from where | needed it to be.



To fix up the animation | added two more recorded frames to my ‘Rifle_AQ’ at
‘pitch’ (-45 and 45). The frames | needed to get were halfway between ‘CC and
CD’.

SEIUNS2T5. L3490

Uy Chzinnals: 1
Approg Size: STT4104424%

Rifle_AD_CD45

and another frame from between ‘CC and CU’.


https://www.youtube.com/embed/PemoGROJsjE?feature=oembed

Rifle_ AD_CU45

These are then added to the ‘Rifle_AQ’. The frame ‘CU45’ is placed at ‘Pitch’
(45).

(=) Perspective | (&9 Lit ) (‘show ) (LoD Auto ) (_x1.0) (@ x1.0) (& @ ,ﬁ@]. 19-]. 025 @

Previewing Blend Space Rifle AO

(=) (= Perspecive) (W9 Lt (show (LoD Awto ) (__x1.0) (@10} @ o 2@ =E @ )@ =) (1)

Previewing Blend Space Rifle AO




This is the result of my reference video ‘TPS Build Part 6 — Finishing up Aim
Offset and Moving / Asset References’ (K, Dail. 2015).

[ L
EmTme - RTINS Y
N ﬁu|ﬂ.. ‘ﬂ.. -

7

However, I’'m not going to be using this instead | will be using the ‘Transform
spine bone | set up earlier.

Em————— T )

Amming Spine Rotator @ <—\———— -
< Local To Component
— 7
! 1
\
\ ‘\\
Play |dle_Rifle_Ironsights_Copy3
\-\\
.\
\

‘ @' Rotation

3 Component Pose

—

Pitich @



https://www.youtube.com/embed/kxIQDxTwCxQ?feature=oembed

Starting the weapon blueprint

The first step is to make a new folder in the ‘Content Browser’ named
‘Weapons’.

PEY Search Folders jo] T Filters E

4 g Content
» il AnimStar

[
[
[
[
[

b
[ I ThirdP

Drop fi
click to create content.

The next step was to add an ‘Actor-Blue Print class’ to the new folder and
name it ‘WeaponMaster_BP’.

€& - | I= Content » weapons

PN Scarch Folders jo] T Filters v

4 & Content .
[ Il AnimStarterPack

4 Common Classes
world.

Now | needed to add an ‘Enumeration’ folder named
‘E_WeaponlnventorySlot’,




and make four new ‘Enumerators’ these will be my four weapon states. The
first weapon state is named ‘none’ for when the character is not holding a
weapon. The second is named ‘Melee’ for things such as swords and/or knives.
The third named ‘Primary’ for weapons such as rifles and shotguns. Finally, the
fourth is named ‘Secondary’ for things such as pistols. However, | will be
focusing and completing the ‘Primary’ Enumerator, but the other ones are
there for future use.

4 Enumerators

To set up the ‘primary- Enumerator’ | needed to add another component for
the ‘holster socket’ and the ‘weapon slot’. To do this | needed to add a
‘structure’ named ‘S_CharacterWeaponSlotStruct’.

In this ‘Structure’ | needed to make the ‘variable pin type’
‘E_WeaponlnventorySlot’ and name this ‘WeaponSlot’. | also needed to add a
new ‘variable’ named ‘HolsterSlot’ with a ‘name- variable pin type’.

4 Structure 4 Default Values

B Mew Variable
oo

M WeaponSlot @ E Weapon Inventow . x
> RN (IR




Now that this was set up, the next thing | needed to do was set up the
characters base weapon, this is done in ‘MasterWeapon_BP’. The first step was
to add a ‘skeletal mesh’ component named ‘WeaponMesh’.

4 Add Component ~

® WeaponMaster_BP(self

4 DefaultSceneRoot

 WeaponMesh

Next, in the events graph | needed something to tell unreal to fire the weapon.
The third person character drives this. Before | could make any adjustments to
the characters ‘EventGraph’ | needed to set up an ‘input’ named ‘Attack’ that |
wanted the shoot button to be, ‘Left Mouse Button’. This is done in the
‘project settings.

Engine - Input

'h These settings are saved in Defaultinput.ini, which is currently writable.

F I AimingDownSights 4 X
:J Right Mouse Button S Shift . Ctrl . Alt . Crmd . o
| Gamepad Right Trigger ad Shift [ ctrl [ At [ cmd ] %

Pl attack + X

shift i ctrl [ At [ cme @ X

This could now be added to the ‘ThirdPersonCharacter- EventsGraph’ as an
‘Action Event’.

- £ » InputAction attack

Pressed [ >

Released [

Koy




Furthermore, | needed this to check if my weapon ‘Actor’ Is valid. So, | needed
to add an ‘IsValid’ after the ‘InputAction’. This will dictate the weapon in use. |
already had an ‘Actor’ blueprint made for this however, | needed a new
Variable to tell the ‘IsValid’ what it is checking for. So, the new ‘Variable’ has
the ‘Variable type- Weapon Master BP’ and is named ‘EquippedWeapon’.

FRTETEL

Variable Name EquippedWeapon

Variable Type

Editable

Tooltip

Expose on Spawn
Private

Category

Replication

A second ‘IsValid” was then created and the EquppedWeapon variable was
connected to both ‘IsValid’.

- J—
> InputAction attack ? IsValid
P Exec IsWald [

Input Oibpect Is Mot Wabd [

—

7 IsVahd
[ Exec IsVahd [
Dibyect Is Mot Walid [

F_

Equipped Weapon

| then needed unreal to be able to notify who is using this weapon. To do this |
needed to change the ‘Replication’ of ‘EquippedWeapon’ to ‘Repnotify’.

* Weapons

" OnRep_EquippedWeapon

(This will be continued later in the project)



For now, | needed to create a state to drive the ‘Attack input’. So, back in
‘WeaponMaster_BP’ | needed to create a custom event named
Server_StartFire’.

& Server_StartFire

A second one was also created named ‘Server_StopFire’.

< Server_StopFire

These both needed to be set to ‘run on server’, ‘Reliable’ and ‘Call in editor’.
Two new functions then needed to be created one named ‘StartFire’ and
another named ‘StopFire’ these were then added to the ‘CustomEvents’. As
SO...

¥ Server_StartFire & start Fire
/ .
» —
Target | self|

¥ Server_StopFire ,
$ stopFire

Target | self|

Before writing the ‘logic’ for these | needed to make sure the
‘ThirdPersonCharacter’ could call the logic when the input is made. To do this
both ‘Functions’ are added to the ‘ThirdPersonCharacter- EventsGraph’ and
connected as so...
"7 isvaid “O startFire

P Exec IsValid —

=~ [ >
Input Object IsNotValid

? IsVahd
[ Exec Isvalid
Input Object Is Not Valid >

Target

—%
( Equipped Weapon ¥




To set up the logic for ‘StartFire’-

| first added a ‘Switch Has Authority’ and added ‘Server Start Fire’ to the
‘Remote’.

§8 Start Fire 8 Switch Has Authority
»P — » Authority |
Remote [

& Server Start Fire

M-l A I}
ELIABL

Target Eﬂ

| then needed to create a new ‘Variable’ named ‘WantsToFire’ for the
condition on a ‘Branch’.

True [

Condition False P

4 R \
( Wants to Fire )

However, if the ‘WantsToFire’ variable is ‘false’ It needs to be set to ‘true’.

Wantsto Fire {4

B8 Start Fire TS Switch Has Authority L Branch !

SET
~»
»P —— » T e —————————————T 4 True
{ Wants to Fire [
False

Remote Condition

Wants to Fire

& Server Start Fire

RELIABLE

Target [self]

To set up logic for ‘StopFire’-

The same was then done to ‘StopFire’ however the ‘Server Start Fire’ is now a
‘Server Stop Fire’ and the ‘set’ is false.



¥ Stop Fire T5 Switch Has Authority
e 2 Branch

»P —— Authority |
» True
Remote Wants to Fire ()

Condition False

)

Wants to Fire

" server Stop Fire

Target [self]

| then created a new ‘function’ named ‘CamerAim’ this is where the ‘logic’ for
‘tracing projectiles’ this will control where my ‘projectiles (bullets)’ travel.

This is the end of my reference video ‘TPS Build Part 7 Starting the Weapon
Blueprint’ (K, Dail. 2015).

Creating Child Actor Class for Primary Weapon

| needed to make the weapon understand which player owns it so it can fire in
the game editor. First, | needed the player character to be able to ‘talk’ to the
weapon in the game world. The first step to do this is to add a ‘printstring’ in
the ‘StartFire’ function named ‘Should be firing weapon’.

(™F Print String

In Siang
Should be fisng weapon |
v

Now at this point the ‘Input Action Attack’ would never have been passed as
‘valid’ and that’s because my ‘Equipped Weapon’ variable does not exist in the
game world.

'© InputAction attack ? IsValid © Start Fire
Pressed Exec Is Valid A laigelis eapon Mas!
» [ > S
Released P Input Object Is Not Valid [>

\ 9 IsValid

N P Exec Is valid |p

Input Object Is Not Valid [>

Target
‘ g

Equipped Weapon




| needed to create a ‘child actor’ to replace this variable. To do this | needed to
make a ‘child Blueprint class’ from the ‘WaponMaster_BP’ named
‘PrimaryWeapon_BP’. This ‘Child Blueprint class’ inherits the code from
‘WeaponMaster BP’ however, extra unique code can be added to this for
specific weapon/projectile types.

The primary weapon ‘SK_FPGun’ was then set as the ‘Skeletal Mesh’. This
allowed me to separately drag this object into the game editor.

Now | needed the blueprint to spawn in the world. | already made some logic
in the ‘ConstructionScript’ of ‘ThirdPersonCharacter’ to call the ‘static skeletal
mesh’ to appear in the world and attach to the ‘skeletal mesh’ hand ‘socket’.
However, that got detached for now.

| Add Skeletal Mesh Component | AttachTo

D
Target [sefl |




A ‘sequence’ was then added to the ‘Construct Script’ instead, this allows me
to write other functions for when the character spawns into the world. A new
function named ‘GiveDefaultWeapons’ is required. This function allows for pre-
game ‘loadouts’ with the primary weapon attached to the characters main
hand and a second weapon on there back.

#8 Construction Script £- Sequence & Give Default Weapons

»P — P Then 0 P =~
|

Then1 D
Target | self |
Add pin <

To do this | first needed to write some logic in ‘GiveDefaultWeapons’. The first
thing | needed this to do was to check who has Authority with a
‘SwitchHasAuthority’.

"B® Give Default Weapons 1 ; Switch Has Authority '

.

b — » Authority [

Remote [

Secondly, | needed to add an ‘ForEachLoop’. This will find everything in an
‘Array’ and do something to everything in that ‘Array’. Once it has done all the
logic in the ‘Array’. It will then do a ‘Completed’ And continue from there. An
‘Array’ is a storage space of variables for mechanics such as inventories.

=) ForEachLoop
P Exec Loop Body [
Array Array Element

Array Index Or

Completed >




At this point | needed to make a new ‘Array’. This was done by making a new
‘variable’ named ‘DefaultWeapons’ with ‘Weaponmaster BP’ as a ‘class’ for
the ‘variable type’. This was then attached to the ‘ForEachLoop’.

L1d55 OELL 255 DErauins o 2y

. I
4 Variable
Stop / f Const ma EVENt f Givel: \ ame DefaultWeapons
S Variable Type EEEWeapon Mastew
ditable

O

" Default Weapons

-J ForEachLoop

P Exec Loop Body B
Array Array Element

Array Index O»

Completed [

The ‘PrimaryWeapon_BP’ is its ‘Default Value’'.

4 Default Value

4 Default Weapons lelements == @

1] PrimaryWeapon_BP » [ & B R SR J

Now the ‘Actor’ needed a space to spawn in the world. First, | needed the
‘mesh component’ that | am using ‘Mesh’.

T Mesh (Inherited)

| then needed a ‘getWorldTransform’,

[ GetWorldTransform

Target Return Value &

Mesh

And from this | needed a ‘Spawn Actor From Class’ with the ‘collision Handling
Overide’ set to ‘Always Spawn, Ignore Collision’ so that it is guaranteed to
spawn into the world even if it is colliding with something because that could
cause it not to spawn in the game world. The ‘SpawnActor’ also needed an
‘owner’ and an instigator, this allows what ever is attacked in the game world
gets traced back to the ‘ThirdPersonCharacter’ that spawned it. This requires a
‘self’.



“ @ SpawnActor
[ g

Class Return Value
® Spawn Transform

Collision Handling Override

Always Spawn, lgnore Collisions -

Chwiner

Instigator

S
' Self @)

This is the end of my reference video ‘TPS Build Part 8 Creating Child Actor
Class for Primary Weapon’ (K, Dail. 2015).

Setting ‘owner pawn’ and ‘attach owner holster’.

In this section | will be showing how | set up the player character to be the
‘owner’ for the ‘target Actor’ this is to pass through logic such as the player has
shot an enemy who is the owner of that kill (for example). There are multiple
ways to do this however | just stuck to my tutorial reference video to minimise
any problems that could possibly occur as the tutorial is to set up the
‘ThirdPersonCharacter’ to play in both single and multiplayer. This was done in
the ‘WeaponMaster_BP — EventGraph’.

| needed to add a couple of functions that are going to handle the logic of
assigning the ‘Actor’s new owner. The first new function was named
‘SetOwningPawn’. When the logic is called the first thing that needs to happen
is to find out which character called the logic. The first thing | needed to do
was to add an ‘Input’ to ‘SetOwningPawn’ named ‘Owning Pawn’ and set the
reference to the ‘ThirdpersonCharacter’.

4 Graph

4 Inputs

Orwning Pawn

8 Set Owning Pawn




Next, | needed it to find a comparison. | also needed a variable for the
‘ThirdPersonCharacter_BP’ because it needed to know if it’s the same actor, if
it’s not it must be a different actor that’s being assigned. So, | ‘promoted’ the
‘SetOwningPawn’ to a variable named ‘OwningPawn’ and set the ‘Replication’
to ‘RepNotify’.

4 Variable
JU8a0v ] f Atael | variable Name
Variable Type {§ Third Person G
Editable B
pm— | oo R
SET w/ Notify

I _. I Expose on Spawn
Owning Pawn Private B
Category Default -

Replication RepMotify

The next thing to do was to add a ‘Branch’ that will ask if the ‘owning pawn’ is
not equal to the ‘OwningPawn’ variable and if the condition is true then it
needs to set ‘Owning Pawn’ as the owner by using a ‘Set Owner’. This now
made it so whoever the ‘Owning Pawn’ was now the owner of the ‘Actor’

Blueprint.
" f setowner
_ — T — ’ 4
8 Set Owning Pawn Branch ‘ » SET w/ Notify =
»P — D True B il

Owning Pawn ‘ Target [ self|
Owning Pawn Condition False |

New Owner

>

Owning Pawn




| needed to rewrite some of the Attachment logic, this was done in the second
new function added named ‘AttachToOwnerHolster’. The first thing added
here was an ‘IsValid’ with the ‘Owning Pawn’ as the ‘Input Object’.

IS #—
B8 Attach to Owner Holster ? IsValid

P Exec Is Valid |

| ——
(A R ——— \ Input Object Is Not Valid [>
Owning Pawn

And from the ‘IsValid’ | needed to add an ‘AttachTo(Weapon Mesh)’ with an
‘Attach Type’ of ‘Snap to Target, Keep World Scale’. This tells the
‘WeaponMesh’ to attach to the ‘OwningPawn’.

/—'ﬁ
(" weapon Mesh }

_f_ AttachTo

&
Target
In Parent

@ In Socket Name
Attach Type

Snap to Target, Keep World Scale

Weld Simulated Bodies [

However, it couldn’t act as the ‘Parent’, so | had to add a ‘get Mesh’ instead.

" AttachTo

——
? IsValid

P Exec Is Valid [

Input Object Is Not Valid [

»
Target

In Parent

@ In Socket Mame

e —

Weapon Mesh ' Attach Type
Snap to Target, Keep World Scale -
T —.

Target Mesh Weld Simulated Bodies [




| then added the ‘name-RHand_WeaponSocket’ to the ‘Socket Name’.

| AttachTo

P Exec

Input Object Is Not Valid > Vi Parant

@ In Socket Name

Weapon Mesh Attach Type

Snap to Target, Keep World Scale »
Vi

Target Mesh ‘ Weld Simulated Bodies [

/—“_— 3y
f Target RHand Weapon Socket @ ,'

| now needed to make sure that the ‘Owning pawn’ knew that the ‘primary
weapon’ is equipped, and the equipped weapon is the ‘target actor blueprint’.
So, | added a ‘set Equipped Weapon’ with a reference to ‘Self’.

—_—

' SET w/ Notif

» 2D
Equipped Weapon

Target
/'——__\
Self ‘

Now | needed something to happen when all this ‘Is Not Valid’. | needed to find
out if the ‘owning pawn’ is ‘valid’ and if not, then | needed something to make
the ‘variable’ turn to ‘valid’. This was done in the ‘OnRep_OwningPawn’.

% On Rep Owning Pawn

The first thing added here was a ‘Function Is Valid’ on the ‘OwningPawn’ Next,
| needed another ‘Branch’ for if this is ‘False’

Owning Pawn - f 1s valid

Object Return Value




If it is ‘Valid’ | needed something in ‘RepNotify’ so it will call this again. So, to
do this | added a new ‘boolean Variable’ named ‘NeedsAttachedUpdateOnRep’

—— | 4 Variable
il ] L1}
uw f f f J mn f f f Variable Name MNeedsAttachUpdateOnOwnerRep

Editable B

Tooltip

Needs Attach Update on Owner Rep Private

The next thing | needed to add was an ‘And Statement’ as a condition for a
‘branch’.

-

¥ On Rep Owning Pawn ' Branch
B [ True | |
Condition False

Needs Attach Update on Owner Rep

2\ Add pin +
Owning Pawn J 1s valid

Object Return Value

| then dragged in a ‘set’ for ‘NeedattachedUpdateOnOwnerRep’ from the ‘true’
on ‘branch’ and set it too ‘false’.

“.C Branch
» True [p —»

Condition False [ Meeds Attach Update on Owner Rep

O

SET

And from this | needed an ‘switch Has Authority’ with another ‘Branch’ from
the ‘Remote’

} Switch Has Authority

Authority [ s

3
Remote [P =
Condition False P




Now | needed the ‘Owning Pawn’ to find the ‘Equipped Weapon’ with an
‘Equal Statement’ for ‘Self’. This was then connected to the ‘Branch Condition’.

3 ; Switch Has Authority '

» Authority [
»
Remote [p —

Condition False |p

— s %
Owning Fawn ' Target Equipped Weapon I=I

( Self )

Next, | needed to write some more logic for getting the ‘Holstered Weapon’ In
the ‘ThirdPersonCharacter_BP’. For this | needed a new ‘function’ named
‘GetHolsteredWeapons’ this is for any of the weapons that are not being used.
It needed a new ‘Input’ named ‘Slot” with the ‘Pin Type’ of E_Weapon
Inventory Slot’.

BB Get Holstered Weapon 4 |nputs

» || @ N CETTE X

From this | needed to add a ‘Select’ This determines what the ‘Actors’ are
going to be inheriting the ‘slots’ for the Weapons

" 3+ select
Mone Return Value
Melea
Primary
Secondary

Index

The first step | am going to have to make a new ‘Actor’ for each ‘slot’ but they
are all based on the ‘BaseWeapon_BP’. The first step to do this was to make
tree duplicates of the ‘Equipped Weapon Variable’, The first named
‘MeleeWeapons’,

/—\
Melee Weapon




The second named ‘PrimaryWeapon’

/——\.
Primary Weapon !

And the third named ‘SecondaryWeapon’

.',/—'
Secondary Weapon

Vi

Melee Weapon 3+ Select

None Return Value

' Primary Weapon Melee
Primary
Secondary Weapon Secondary

Index

The ‘select’ now needed to be able to talk to the ‘WeaponMaster_BP’ this was
done using a ‘ReturnNode’ set to ‘Pure’.

B Return Node

3+ Select New Param
MNone Return Value
Melee
Primary
Secondary

Index

Now, back on the ‘WeaponMaster_BP’, from the ‘OwningPawn’ | could add a
‘Get Holstered Weapons’ with the ‘SlotType’ to drive it.

_f_ Get Holstered Weapon

D B

Target New Param

T ————=
Slot Type Slot




Then | needed the ‘Self’ Actor to be the same that is currently equipped in the
weapon ‘Slot’. So, | added an ‘Equals’ from ‘Get Holstered Weapons’ and
attached it to a new ‘Branch condition’.

Owning Pawn Target Equipped Weapon

_‘» *"Branch
B True

Condition False

7 Get Holstered \Epc;n
o D

Target New Param

Slot Type Slot

| then added and attached the ‘function’ named ‘AttachToOwnerHolster’.

AEE AT T T D e —
_ Branch ¢ Attach to Owner Holster
3 True [P SIS =
Condition False >

Target [self

Now, back in the ‘AttachToOwnerHolster’ function the
‘NeedsAttachUpdateOnOwnerRep’ variable was then added to the ‘Is Not
Valid’ and set to ‘True’.

SET

Needs Attach Update on Owner Rep

J AttachTo
T8 Attach to Owner Holster Is — E SET w/ Notify y
———r——"p
| 4

Equipped Weapon

’ Owning Pawn Target

. ‘Weapon Mesh
Target

Tamget RHand Weap




The character is now set up with a simple inventory. This is the result of my
reference video there is no weapon as there isn’t one assigned yet. ‘TPS Build
Part 9 Blueprint Owner Logic Between Character and Weapon Actor’ (K, Dail.
2015).

Starting Player Camera and Weapon Actor Shooting

With the main ‘blueprint’ logic out of the way for the weapon ‘Actor’. | needed
to get the last bit of the ‘character blueprint’ done. | also had to set a couple
more lines of logic in the ‘player blueprint’ which will control the ‘line tracing’
ability from the camera to the ‘player characters’ muzzle area. | also needed
the ‘character’ to be able to shoot something out of his weapon.

The first thing to do here was to add a ‘set Owning Pawn’ set to ‘self’ in the
‘ThirdPersonCharacter’ function ‘GiveDefaultWeapons’ after the ‘SpawnActor’
alongside an ‘AttachToOwnerHolster’ connected from the ‘ForEachLoop’
‘completed’.

&> Set Owning Pawn

Target

Owning Pawn

Target



https://www.youtube.com/embed/6TyA-Hm7Ygk?feature=oembed

Now | needed to go into the ‘EventsGraph’ and add a ‘Event BeginPlay’ and
connect the ‘GiveDefaultWeapons’ function to it.

& Event BeginPlay L - © Give Default Weapons

Target [self]

At this point | was ready to set up the weapons being able to fire. However, the
‘StopFire’ function was only allowing for the character to fire once this was
because the logic was already reading its ‘branch’ as ‘false’.

< Branch ' SET

S b

B True

v Wants to Fire [J
Condition False |

/T ————.
Wants to Fire

To fix this | just needed to ‘branch’ it from ‘true’ and not ‘false’ and this fixed
the issue.

SET

Wants to Fire [[J

Condition False [

[ ——————~
Wants to Fire



https://www.youtube.com/embed/NQUibHuLBtE?feature=oembed

Now | started the process of allowing the player to start shooting some kind of
‘line tracer’. The logic that is going to drive the firing is the player is going to
shoot the weapon ‘Actor’ and this is going to shoot the ‘logic’ In the
‘CameraAim’ function. The first thing added to the ‘CameraAim’ function is a
new ‘variable’ with the ‘variable type’ set to ‘Vector’ named ‘AimVector’. this is
the characters position in the world.

FRTETIEL
Variable Nam¢

Editable B
Tootip (N

Show 3D Widg

Expose on Spe [Jj

| now needed a starter Numerical value. This was done by dragging in the
‘OwningPawn’ variable,

Owning Pawn

then | added a ‘Get Base Rotation’ from this,

f Get Base Am Rotation

Target Retumn Value @

And lastly from that | added a ‘Get Forward Vector’. Once connected to the
‘Aim Vector’ this will tell unreal which way the character player is facing.

- | Get Forward Vector
@ InRot Retumn Value @

# Camera Aim

» Aim Vector O

f Get Base Aim Rotation

~ f Get Forward Vector

Owning Pawn Target Return Value @ @ In Rot Return Value @




Next, | needed to set up the ‘debug tracing’. So, from the ‘Aim Vector’ | added
a ‘LineTraceByChannel’ with the ‘Draw Debug Type’ set to ‘For Duration’ so |
could see it in the world if | went to shoot it.

—

| LineTraceByChannel

_ Start Out Hit
[ 00][v 0.0][Z 00]

Return Value

B nd
| DDH DDH 0.0|

Trace Channel

Wisibility -

Trace Complex ()

Actors to Ignore

Draw Debug Type
For Duration

Ignore Self [

From this | needed to find out what the projectile would be hitting. So, from
the ‘Out Value’ | added a ‘Break Hit Result’ to show all the results that its
hitting something.

~* Break Hit Result

D

_ Hit Blocking Hit
Out Hit

Initial Overlap

Time O»

Return Value

Location O»
Impact Point O»
Normal O»
Impact Normal Or

Phys Mat

Hit Actor

Hit Component
Hit Bone Name O»
Hit Item O»
Trace Start O»
Trace End O»




from this point | needed to find out what the character location is and compare
it to another value, but | needed this to stop bullets traveling indefinitely. So,
from ‘Blocking Hit’ | added a ‘select Vector’ function and connected the
‘location’ from the ‘Break Hit Result’ to ‘A’ on the ‘select Vector’'.

"~ Break Hit Result ~ [ Select Vector

Hit Blocking Hit [ T

Initial Overlap O B [x 0.0][v 0.0][Z 0.0]

Time O Pick A

Location @

’

From this | needed another ‘Set Vector’ and a ‘ReturnNode’.

-p P-
== @ Aim Vector O

‘irﬁ;tum Node
~N
&

New Param [}

—

Hit Result ~ [ Select Vector
Blocking Hit @ A Return Value @

Initial Overlap O B [x 00][v 0.0][Z 0.0]

Time O Pick A

Location @

| now needed to create a new ‘Pure Function’ named ‘GetMuzzleLocation’ and
the first thing | had to do was make a new ‘Name Variable’ named
‘MuzzleSocket’ and add this in the new function alongside the ‘WeaponMesh’.

B8 Get Muzzlelocation

>

/o T———
Weapon Mesh

Muzzle Socket

From the ‘WeaponMesh’ | then added a ‘Get Socket Location’ and attached the
‘MuzzleSocket’ variable to the ‘Socket Name’

e o e s L
Weapon Mesh \ J Get Socket Location

laiyt

. \ Target Return Value O»
Muzzle Socket @} g

@' In Socket Name




| now needed to add a ‘Return Node’ as a ‘Vector’ named ‘Muzzlelocation’ and
this will be driven by where the ‘Socket Location’ is.

B Get Muzzlelocation B Return Node

@ Muzzlelocation
Weapon Mesh " f Get Socket Location

/ a Target Return Value @
Muzzle Socket @ g ®

@' In Socket Name

Now | needed to find out what ‘socket’ | needed from the ‘WeaponMesh’, this
is located in the ‘SK_FPGun_Skeleton’.

Name Currant Seraan Size: 0.55
4Root_Bone Trizinglas: 105717
4Grip_Bone Varticas: 4507

f;‘ GripPont UY Chzinnals: ]
s Muzzle
Slide_Bone
Trigger_Bone
Clip_Bone
Ammo

Approg Size: 8641

Once | found it, | then copied and pasted the name into the ‘MuzzleSocket’
variable ‘Default Value’.

Variable

Variable Name

Wariable Type e

Editable B
P L

Private
Category Default -

Aepication - [[CTCHNNRG

-

Default Value

Muzzl




Now back in the ‘CameraAim function’ | could us a ‘get Muzzle Location’ as the
‘start’ on ‘LineTraceByChannel’.

»
@ Aim Vector @ Start

End

O [(50)[o0)[Zog]

| Get Muzzlelocation
| Target is ) nM Trace Channel
D D

Target [self|  Muzzlelocation @ Trace Complex (J

The Next step was to build a new ‘BluePrint’ so, | made a new folder in the
‘content’ folder named ‘BluePrints’ and within this | made a new ‘BluePrint
Class’ as a ‘Player Controller’ named ‘TPSPlayerController’.

Search Folders £ TFiItersvm
4@ Content

[ Il AnimStarterPack M
) BluePrints -
4 % FirstPerson ‘
4 % FPWeapon -
[ I Materials
B Mesh
Bl Textures

In here | need to establish the variables | needed to be able to call them in the
Weapon BluePrint. For this | needed to add a new function named ‘ViewPoint’'.
| also needed a new ‘Vector variable’ named ‘OutViewLocation’ | first dragged

this into the ‘viewPoint’ function as a ‘set’.

8 View Point

»
p-—=T1

SET

Out View Location

© [00][V 00][Z 00]




| then added a ‘Get Controlled Pawn’ separately and from this | needed to find
out who is playing what character, either a ‘client’ or a ‘server’ so from this |
added a ‘Cast To ThirdPeronCharacter’.

»# Cast To ThirdPersonCharacter

i e S 5

Object Cast Failed P

As Thard Person Charactey

Return Value

From this | needed the camera that is associated with the
‘ThirdPersonCharacter_BP’ which is the ‘Follow Camera’ and from this | added
a ‘Get Camera View’

[ Get camera View

Target Desired View Location @

Follow Camera O» Delta Time ﬁ Dresired Yiew B

Diesired View Post Process Blend Weight Os

Desired View Post Proces

And the ‘desired View Location’ is connected to the ‘Set OutViewLocation’.
This will now allow the ‘CameraView’ to set the ‘OutViewlocation’ for this
‘Vector’.

Desired View Location @ —————@» Qut\|




| now needed something in place to drive it alongside this as well just in case
the ‘Cast’ fails. To do this, from ‘Cast Failed’ another ‘Set Viewlocation’ is
added with a function of ‘Get Focal Location’.

SET

f Get Focal Location =g

@' Out View Location
Target [self] ~ Return Value @

And finally, a ‘Return Node’ was added at the end.

/ ————

SET e——
—» - ' ¥ Return Node b
@ Out View Location O TN ®

This was the end of my reference video ‘TPS Build Part 10 Starting Player
Camera and Weapon Actor Shooting’ (K, Dail. 2015).

Finishing camera Aiming

So, the first steps to continuing the camera Aiming was to create a new
‘LocalVariable’ with the ‘type’ set to ‘Vector’ named ‘OutAim’

4| ocal Variables L

== QutAim

A new function was then added named ‘GetAimVector’.

Functions (1 +

# ¢ ConstructionScrip
f GetviewPoint

[ GetaimVector

To start off the logic in this function an ‘IsValid’ was added.

B8 Get Aim Vector
W—
? IsVahd

. ‘
! P Exec IsValid p }

Input Object Is Not Valid | |




The next thing added was a ‘GetControlledPawn’. This was then connected to
the ‘Input Object’.

B Get Aim Vector
? IsValid

»
= P Exec Iz valid [

— Input Object s Mot Valid
f Get Controlled Pawn P I [ Holvas B

Target [ self | Return Value

The ‘Local Variable — OutAim’ was then added in as a ‘set’

P ST |

& Out Aim (]

To set the number in this | needed to drag from the ‘GetControlledPawn’ to
add a ‘GetBaseAimRotaion’ and from this | added a ‘Get Forward Vector’ this
then gave the set value needed in ‘OutAim’.

" f Get Base Aim Rotation

\

Target Return Value @ ol f f Get Forward Vector

N\
= @ In Rot Return Value @

Now that the ‘IsValid’ was set, | needed to set what would happen if it was
‘IsNotValid’. So, to do this | added another ‘Set — OutAim’ and a ‘Get
ControlledRotation’ alongside a ‘GetRotationXVector’.

' SET
= 4

TR T R e i S
f Get Cngo!Rotatbn ' f GetRotationXVector l @ Out Aim

1 ® InRot eturn Value @ |

Target [self|  Return Value @




From here | created a ‘return node’ with the ‘OutAim’ variable connected.

B8 Return Node

. ® Aim
Out Aim @

The next step was to go back into the ‘GetViewPoint’ function and connect the
variable ‘OutViewLlocation’ to its ‘ReturnNode’. These two functions were then
completed.

B8 Return Node

: SET
= 4

@ Out View Lgoation @ Out View Location

/1—_\
(" out View Location @ )

The next step in this aiming process was to go into the project settings under
‘Maps & Modes’ and change the ‘Player Controller Class’ to the folder that |
made not long ago ‘TPSPlayerController’.

"5 EIOJECUSEINGE

Project Project - Maps & Modes

aved in DefaultEngine.ini, which is current

Heo-

ThirdPersenGameMow KIS RE 3

Thiceeisoncharsic~ IR
CI—— « o +
T « o +
ST « o +
DTS « o +
ST « o +




After doing this | created a new ‘Pure’ function named ‘GetCastedOwner’.
Within this new function | first added a ‘Get controller’ with a ‘Cast To
TPSPlayerController’ this was convered into a ‘Pure Cast’.

¥ Get Casted Owner /,//J
B

ﬂ? Get Controller »+ Cast To TPSPlayerController
> _ Object As TPSPlayer Controller
Target [self|  Retum Value

—— Success

Both out puts were then conneceted to a newly made ‘ReturnNode’ with the
‘Success’ named ‘IsValid’.

¥ Return Node

I
As TPSPlayer Controller

Is Valid
»+ Cast To TPSFlayerController

Object As TPSPlayer Controller

Success

At this point when | ‘Preview’ the game | could aim and | could shoot however,
all the ‘LineTracers’ go to world (0,0).

Building a Third Person Shooter - Unresl Engine Tutorial

3 155 Duld Part § Crusting Child Acsar Class for Pricwry Winopan

T



https://www.youtube.com/embed/FgMAEiwuI9s?feature=oembed

This meant more work was necessary in the function ‘CameraAim’. So the first
step to fix this was to drag off of the ‘OwningPawn’ to add a ‘GetCastedOwner’
and from this | added a ‘GetViewPoint’ alongside the ‘GetAimVector’. These
were both then set to ‘Pure’.

| Get View Point

_J Get Casted Owner Target is TPSPlayer C

: Ut

Target Out View Location O»

Target As TPSPlayer Controller

Is Valid
~ f Get Aim Vector

I
Py

Target Aim O

From ‘Get Aim Vector’ | then added a ‘Vector * Float’ the multiply value was
the set to ‘100,000’ this adds a stopping point.

" f Get Aim Vector

Target Am@ —

From this a ‘Vector + Vector’ was then added into the ‘GetViewPoint’ and this
ended up becoming the end point.

) H LineTraceByChannel
—» »

@ Aim Vector O @ Start

» / _ @ End

B8 Camera Aim

’, f Get Muzzlelocation Trace Channel
“F Get Base Aim Rotation ) i [
Target is Pawn " f et Forward Vector / Muzzlelocation @ °
- g Trace Complex [J
- - - Target Return Value @ — @ In Rot Return Value @ =
wning Pawn Actors to Ignore

Draw Debug Type
For Duration

J Get View Point - —— { ignore Self [

Target Out View Location @
Target As TPSPlayer Controller

Is Valid

Aim @



Now at this stage when | ‘Previewed’ the game the ‘Line Tracers’ followed the
Camera centre point.

However, the Line Tracer would just go on forever so to fix this ‘Vector —
Vector’ was simply added with the ‘GetMuzzleLocation’ and connected to the
B value in ‘Select Vector’'.

" f select Vector

P

—

Return Value @ —

" | Get Muzzlelocation I , ®

Muzzlelocation @

This concluded the logic for aiming.

The last thing to do in this section was to have something shoot out of the gun.
This was done in the “WeaponMaster_BP’ under ‘StartFire’. A ‘Spawn Emitter
at Location’ with the ‘AimVector’ set as its ‘location’ and the Emitter Template
set to ‘P_Explosion’ was added to the end of the logic.

¢ Camera Aim " f Spawn Emitter at Location

Emitter Template Return Value
Target | self P_Explosion w

@ Location

_Rotation )
' [x00][v 0.0][zZ 0.0]
Y s s — L J

Aim Vector @

Auto Destroy [



https://www.youtube.com/embed/LOvmKIveTHo?feature=oembed

This was the end of my reference video ‘TPS Build Part 11 — Finishing Camera
Aiming’ (K, Dail. 2015). This was the result.

Making the Character Look In Direction of Camera

At this point most of the work was out of the way for getting the weapon
established, being able to shoot, walking around and aim up and down. In this
next section | will be making the characters head look towards where the
camera is looking.

A slight future problem arose, that being associated with the ‘Cast To
ThirdPersonCharacter’. If | was to use these and move them around, they could
cause future errors. So, to prevent this | promoted it into a variable named
‘CastToTPSCharacter_BP’. This made it so | could just copy the variable and
change the ‘Cast to’. This would make all these promoted variables around
unreal change at the same time, saving a lot of hassle.

»» Cast To ThirdPersonCharacter : -

£- Sequence
VaEEES e -
[ & SET

, = P - b Then 0 B
Object Cast Failed > ‘

Cast to TPSCharacter BP Then1 |

As Third Person Character
Add pin +



https://www.youtube.com/embed/ikbLEz_hNjM?feature=oembed

| then made a bunch of changes to the ‘EventsGraph’ in the
‘ThirdPerson_AnimBP’. The first change was to connect this new variable ‘Cast
to TPSCharacter_BP’ to the ‘Get movement Component’ in the comment ‘Set
'IsInAir' (used in state machine)’

| Get Movement Component

Target Return Value

S O S S -
Cast to TPSCharacter BP

Instead of the ‘Try Get Pawn Owner’

" f Try Get Pawn Owner

Target [self|  Return Value

The second change was to add a ‘sequence’ at the end of the comment ‘Set
"IsinAir' (used in state machine) and connect this to the ‘set — Speed’ in the
comment ‘Setting 'Speed' (use in 1D blend space)’ with the ‘Cast to
TPSCharacter_BP’ variable connected to ‘Get Velocity’.

SERYRESPECANUSENNIDILIERGESPACE))
I cetVelocity | VectorLength
= L= e A Retum Value @

Target Retum Value

The third change was to delete the ‘Pitch’ in the comment ‘Spine rotator for
aiming weapons’ and connect the branch directly into the ‘Set-
AimingSpineRotator’ instead.




The fourth change was to copy and paste the ‘Get base aim rotation’ with the
‘Cast to TPSCharacter_BP’ connected to it and from there it was plugged into a
‘set- Pitch’ with the newly made ‘sequence’ connected to that.

+- Sequence

SettingrSpeedUSeENnN Dbiendispace)
» Then 0 [

Then1 p ——— ’ —
f Get Velocity f VectorLength »

Target Return Value @ T

Add pin 4
® A ReturnValue @ ® Speed O

T —
Cast to TPSCharacter BP

“f Get Base Aim Rotation

Target Return Value 2 =4 [

Return Valu (P @ Pitch O

Return Value Z (Yaw) O

The final change was to delete ‘Try Get Pawn Owner’ and ‘Cast to
ThirdPersonCharacter’ to replace it with the ‘Cast to TPSCharacter_BP’
variable.

p—

Castto TPSCharacter BP
- e
Target Camera Boom

D

Target Relative Rotation O»

Now that this was all reorganised, | could create a new logic section for the
head manipulation. The first thing | needed to do was find the ‘node’ that’s
going to feed a value to drive the head bone. This being the ‘CameraBoom’. So
to do this | dragged from the ‘relative rotation’ and added a ‘Break Rotator’
because | only needed the rotation of ‘Z(Yaw)’.

Target Camera Boom
" =7 Break Rotator

@' Rotation X (Roll) O»

/%?/ Y (Pitch) O»
‘ Target Relative Rotation @ |

Z (Yaw) O




So, from that | needed to check what the ‘Z(yaw)’ value was doing so to do this
| dragged from the ‘Branch- False’ into a ‘Print String’ | also connected the
‘Z(Yaw)’ to the ‘Print String’ aswell.

[ Print String

7 Break Rotator E D

@ Rotation X (Roll) O In String

then when it was facing right it would go upto ‘180

orgfmp Game Preview Standalone (64-bit/PCD3D_SM5)




However, | didn’t need the full “180° either direction as this would twist the
characters head all the way around as if he’s possessed. | needed it around
‘45° instead. So, to do this | grab from the ‘Z(Yaw)’ and added a ‘Float/Float’
with the value of 2’ this divides the ‘180° by 2 giving ‘90’

* -7 Break Rotator

@ Rotation ¥ (Roll) O
Y (Pitch) O»

Z(Yaw) @ ;

From this | added a ‘clamp angle’ with a ‘Min angle degrees’ of -45°” and a
‘Max Angle Degrees’ of ‘45%. This makes it so the characters head will not
rotate past a more realistic angle.

[ Print String
g

In String

v

" [ Clamp Angle
@ Angle Degrees Return Value @
Or Min Angle Degrees [-45 |

O» Max Angle Degrees [45 ]

From this | added a ‘Make Rotator’, | needed this to set a degree that is going
to manipulate the head bone.

.~ Make Rotator

Return Value O»




’

The next step was to make a new ‘rotator variable’ named ‘NeckinputRotation
and connected the ‘Print String’.

[ Print String
»

. Break Rotator In String

~—

e L SET
»

_— & Neck Input Rotation

= Make Rotator

Retum Value @~

Now | needed to go over to the ‘ThirdPerson_AnimBP’ in the ‘AnimGraph’ and
add a in the new variable ‘NecklnputRotation’. A ‘Transform (Modify) Bone’
with a ‘rotation mode’ of ‘Add to Existing’ and the ‘Rotation Space’ set to ‘Bone
Space’. The ‘Bone to Modify’ was set to ‘neck_01’ at an ‘alpha value’ of ‘0.5’ so
the manipulation wasn’t too severe.

e

Neck Input Rotation @ —eee—

=T

e Transform (Modify) Bone

BONE Necx U

Default @ Rotation

———
Local To Component
’ Component Pose

f -1 N

O Alpha [ 5]

A copy of this was then made with the ‘Bone to Modify’ set to ‘head’ at an
‘Alpha value’ of ‘1.0’ as it needs full manipulation.

Transform (Modify) Bone

@ Rotation *

3 Component Pose

O Alpha [1.000000

L O I A B I :
\ Component To Local BaseMovement

A

Now this allowed head movement however it was in the wrong direction.



So, to fix this | added a ‘float * float’ with a value of 1" in the
‘ThirdPerson_AnimBP’.

I

.~ Make Rotator
m - X (Roll Return Value @
@ Angle Degrees -
O Min Angle Degrees [-45 |

O Max Angle Degrees [45 |

Add pin

This fixed the issue.



https://www.youtube.com/embed/WSHjqJn_P0w?feature=oembed
https://www.youtube.com/embed/fDfhHWGySHk?feature=oembed

Now | needed to set this up again but for the ‘Pitch’. So, to do this | copied and
pasted the line of logic for Z(Yaw) but connected it from the Y(Pitch) on the
first ‘Break Rotator’ and into X(Roll) on the second ‘Make Rotator’.

Now this allowed the characters head face up and down.

However, towards the end of the video it shows the characters head snapping
side to side after it reaches its ‘clamped angle’ limitations. So, to fix this |
added a ‘float <=’ set to a value of (-120) alongside a ‘float >=" set to a value of
(120). These were then plugged into a ‘OrBoolean’.


https://www.youtube.com/embed/cDTRttV9vlg?feature=oembed

° Break Rotator

@ Rotation X (Rolly O»

¥ (Pitch) e -/

Z(vaw) @ -

Now from the second ‘Make Rotator’ | needed to add a ‘Set -
NecklnputRotation’ and connect it to the ‘Branch’ as ‘True’

SET

~— Meck Input Rotation

After that | added a ‘Get — NecklnputRotation’ and a ‘Rinterp To’ from that
connected to the ‘Set — NeckinputRotation’.

{ Branch
> True [

Condition False [ \

—

" Neck Input Rotation @ J Rinterp To

~~ @ Current Return Value @

__ Target
Y [ o0][v 00][7 00]

O Delta Time [0.0]

O Interp Speed |E|

Now that | had this set for the head moving forward, | needed a second one to
control the head as the character looks at the camera. So to do this | copied
and pasted the ‘Rinterp To’



_ —
Neck Input Rotation @ . J Rinterp To
@ Current Return Value @

Target

O [ 00][7 00][Z 09]

O» Delta Time [0.0]

O Interp Speed [0.0]

—_—
Neck Input Rotation @ . Jf Rinterp To

@ Current Return Value O»
L I

" [x 00][v 0.0][Z 00]

O» Delta Time [0.0]

O Interp Speed 0.0

For both ‘Delta Time’ | connected a ‘Get World Delta Seconds’. | also set both
the ‘Interp Speed’ to (3.0). This was then plugged into the bottom ‘Set —
NeckinputRotation’ allowing this to set the value on its own.

Condition False
\ @ Neck Input Rotation
\

Neck Input Rotation @ [ RinterpTo
@ Current Return Value @
. Target
@ Delta Time

O Interp Speed |3 |

\ y o—

———p

“f Rintep To
@ Current Return Value @ —— — @ Neckinput Rotation

@ Delta Time




Now this will allow the characters head to look around smoothly wherever the
player is looking, while standing still or running around.

This is the end of my reference video ‘TPS Build Part 12 — Making the Character
Look In Direction of Camera’ (K, Dail. 2015).

Fixing editor errors:

The first error was caused by unreal not knowing exactly where the
‘NecklnputRotation’ is coming from.

B True et L L L L L]

Condition False | \

e —_—
Neck Input Rotation @) [ Rinterp To

N

=~ @ Current Return \
_ Target
=[x 00][v 00][z 00]

@ Delta Time

“f Get World Delta Seconds

/O Interp Speed [3 ]
Return Value @ x5



https://www.youtube.com/embed/UwLKn766AIY?feature=oembed

To fix this | needed to feed it from the ‘CameraBoom’

T ——
Cast to TPSCharacter BP

/——*
{ Target Camera Boom ;

Target Relative Rotation @

So, from the ‘Branch’ | connected an ‘IsValid’ and connected the
‘CameraBoom’ to it aswell as the ‘Input Object’. This was then fed into the
second ‘Branch’. This will check if the ‘Cameraboom’ is active. This fixed the
first ‘editor error’.

Aiming Weapons —_—
2 Jf Get Base Aim Rotation f Clamp Angle

W ? @ Angle Degrees
. Target Return Value X (Roll) O 7 5 :

True » Min Angle Deg

» e B Return Value Y (Pitch) @

Condition False B O Max Angle Deg|

Return Value Z (Yaw) O

s
Cast to TPSCharacter BP

—_—

? IsValid R
= > id . Branch
Exec Is Vali =
miia ~~» True B
Input Object Is Not Valid [>

Target Camera Boom

Condition False |

L)

Target Relative Rotation @ —

B o

The second error to fix was in the ‘ThirdPersonCharacter —
GiveDefaultWeapons’ function. Two things were happening here the first was
when it was giving the default weapon to the character it was not realising
what it was even though the ‘Actor’ was spawning in. so to fix this | added an
‘IsValid’ after the ‘SpawnActor’ that basically asks if there is a weapon it will
spawn but if not, it won’t do anything.

? IsValid

P Exec Is Valid [

& SpawnActor Input Object Is Mot Valid >

Class Return Value

Target

Owning Pawn
Spawn Transform

Collision Handling Override

Always Spawn, Ignore Collisions

Owner - “& Attach to Owner Holster
Instigator - -

S =P

Target



The same was then done to the ‘Attach to Owner Holster’. This fixed the
second ‘Editor Error’.

Set Ownng Pawn
P Exec Is Valid | o

e \ i Target is Weapon Master BP
& SpawnActor / Input Object Is Not Valid [> » o
B b

Class Return Value

Target

Owning Pawn
Spawn Transform

Collision Handling Override

Always Spawn, Ignore Collisions v

gnes (& Attach to Owner Holster
Instigator b Jaiget is Weapon Master BP

B ]

A /
\ IaVa / Target
~— [P Exec Is Valid

Input Object Is Not Valid >

At this point there were no more errors, and | was happy with my character
logic. This was the result of my ThirdPersonCharacter after the end of my
reference video ‘TPS Build Part 17 Closing and Changes to Project File’ (K, Dail.
2015).

NS e -

’ J._“\W..ﬁ nmea



https://www.youtube.com/embed/M6Gl87PMNRk?feature=oembed




